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Fast Capacitance Extraction of General

Three-Dimensional
Keith Nabors, Songmin Kim, and Jacob

Abstract—In [1], a boundary-element based algorithm is
presented for computing the capacitance of three-dimensional

m-conductor structures whose computational complexity grows

nearly as mn, where n is the number of elements used to dis-

cretize the conductor surfaces. In that algorithm, a generalized

conjugate residual iterative technique is used to solve the “n x
n linear system arising from the discretization, and a multipole
algorithm is used to compute the iterates. In this paper, several
improvements to that algorithm are described which make the

approach in [1] applicable and computationally efficient for al-
most any geometry of conductors in a homogeneous dielectric.
In particular, a new adaptive multipole algorithm is described,

along with a strategy for accelerating the iterative algorithm by

exploiting electrostatic screening. Results using these tech-
niques in a program which compntes the capacitance of general

three-dimensional structures are presented to demonstrate that

the new algorithm is nearly as accurate as the more standard
direct factorization approach, and is more than two orders of

magnitude faster for large examples.

I. INTRODUCTION

I N THE design of high performance integrated circuits

and integrated circuit packaging, there are many cases

where accurate estimates of the capacitances of compli-

cated three-dimensional structures are important for de-

termining final circuit speeds and functionality. Algo-

rithms using method of moments [2] or weighted-residuals

[3], [4] based discretizations of integral equation formu-
lations, also known as boundary-element methods [5], are

commonly used to compute these capacitances, but such

approaches generate dense matrix problems which are

computationally expensive to solve, and this limits the

complexity of problems which can be analyzed.

In [1], a fast algorithm for computing the capacitance

of three-dimensional structures of rectangular conductors

in a homogeneous dielectric is presented. The method

solves the discretized capacitance problem using an iter-

ative technique with iterates computed by a hierarchical
multipole algorithm [6], [7]. This general strategy was

first suggested in [8]. The computation time for the al-
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was shown to grow nearly as mn, where n is the

of panels used to discretize the conductor sur-

faces, and ; is the number of conductors. In this paper,

we describe several improvements to that algorithm and

present computational results on a variety of examples to

demonstrate that the new method is accurate and can be

as much as two orders of magnitude faster than standard

direct factorization approaches.

The outline of the paper is as follows. The boundary-

element formulation and a standard iterative algorithm for

solving the generated matrix problem are briefly reviewed

in Section II. A simplified version of the hierarchical mul-

tipole algorithm is described in Section III, and our new

adaptive multipole algorithm tuned to the boundary-ele-

ment formulation is given in Section IV. A new precon-

ditioning strategy for accelerating the iterative algorithm,

based on the idea of screening, is presented in Section V.

Experimental results using our program FASTCAP to

analyze a wide variety of structures, made possible by a

link to the M.I.T. Micro-Electro-Mechanical Computer

Aided Design (MEMCAD) system [9], are presented in

Section VI. Finally, conclusions and acknowledgements

are given in Section VII.

II. PROBLEM FORMULATION

Capacitance extraction is made tractable by assuming

the problem contains conductors embedded in a homog-

eneous dielectric medium, though the techniques described

below can be extended to the piecewise-constant dielec-

tric case using the approach in [10]. The capacitance of

an m-conductor geometry can then be summarized by an

m x m symmetric matrix C, where the jth column of c

has a positive entry C“J, representing the self-capacitance

of conductor, and negative entries C’tl, representing cou-

pling between conductors j and i, i = 1, 2, “ “ Q, m, i #

j. To determine the jth column of the capacitance matrix,

one need only solve for the surface charges on each con-

ductor produced by raising conductor j to one volt while

grounding the rest. Then CLj is numerically equal to the

charge on conductor i, i = 1, 2, . . . , m. Repeating this

procedure m times gives the m columns of C.

These m potential problems can be solved using an

equivalent free-space formulation in which the conductor-

dielectric interfaces are replaced by a charge layer of den-

sity o [11, 10]. Assuming a homogeneous dielectric, the

charge layer in the free-space problem will be the induced
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charge in the original problem if o satisfies the integral

equation

l)(x) = ! 1

surfaces a(x’) 47r6~\lx – X’Tda”

x ● surfaces. (1)

where ~(x) is the known conductor surface potential, da’

is the incremental conductor surface area, x, x‘ = R3, and

IIx II is the usual Euclidean length of x given by

x; + x; + x:.

A standard approach to numerically solving (1) for a is

to use a piece-wise constant collocation scheme. That is,

the conductor surfaces are broken into n small panels or

tiles, and it is assumed that on each panel i, a charge, qi,

is uniformly distributed. Then for each panel, an equation

is written which relates the known potential at the center

of that ith panel, denoted pi, to the sum of the contribu-

tions to that potential from the n charge distributions on

all n panels [10]. The result is a dense linear system,

p~=~ (2)

where P ~ R“xn, q e Rn is the vector of panel charges,

~ e Rn is the vector of known panel potentials, and

Pq=~
[

1

panel, 47rE~ IIx, – x ‘ II
da’, (3)

al

where xi is the center of the ith panel and aj is the area of

thejth panel. For such a point-collocation scheme, in gen-

eral Pti # Pjil that is P is unsymmetricl.

The dense linear system of (2) can be solved to com-

pute panel charges from a given set of panel potentials,

and the capacitances can be derived by summing the panel

charges. If Gaussian elimination is used to solve (2), the

number of operations is order ‘n3. Clearly, this approach

becomes computationally intractable if the number of

panels exceeds several hundred. Instead, consider solving

the linear system (2) using a conjugate-residual style it-

erative method like GMRES [12]. Such methods have th?

form given below:

Algorithm 1: GMRES algorithm for sol!ving (2)

Make an initial guess to the solution, qO.

Set k = O.

do {

Compute the residual, r k=~–p~.

if IIr~ll < tol, return ~ as the solution’.

else {

Choose a’s and ~ in

q ‘+1 = z~=oa~q~ + drk

to minimize II rk+ 1II.

Setk=k+l,

}

1

jIf a Galerkin scheme rather than point collocation is used [1 1], the re-
sulting P matrix will be symmetric, but computing the Pfl’s will require
evaluating a more complicated integral.

The dominant costs of Algorithm 1 are in calculating

the n2 entries of P using (3) before the iterations begin,

and performing nz operations to compute Pqk on each it-

eration. Described below is our adaptive hierarchical mul-

tipole algorithm which, through the use of carefully ap-

plied approximations, avoids forming most of P and

reduces the cost of forming P@ to order n operations. This

does not necessarily imply that each iteration of the

GMRES algorithm can be computed with order n opera-

tions. If the number of GMRES iterations required to

achieve convergence is order n, then to perform the min-

imization in each iteration will require order n2 opera-

tions. For this reason, it is important to insure that the

number of GMRES iterations required to achieve conver-

gence remains bounded. A preconditioning scheme is de-

scribed below which accomplishes this, at least for all the

examples tested, by reducing the number of GMRES it-

erations required to achieve one percent accuracy to fewer

than 30, even for problems where n is as large as 10000.

III. THE HIERARCHICAL MULTIPOLE ALGORITHM

A complete description of the hierarchical multipole al-

gorithm is not given here; the original description is in

[6], [7], and its application to capacitance extraction is

described in [1]. Instead we describe the expansion ap-

proximation and examine a simplified two-dimensional

example which both exhibits the method’s salient fea-

tures, and motivates the adaptive algorithm and the pre-

conditioned described in subsequent sections.

A. Multipole Expansions

Multipole expansions are often used to approximate the

far field due to a confined charge distribution [13]. For

example, consider evaluating the potential pi at the center

of a panel i, (r,, @i, @i), due to a collection of d distant

panels, as in Fig. 1. The potential due to the surface

charges on those d panels is given approximately by the

truncated multipole expansion

where the spherical coordinates of the evaluation location

are measured relative to the origin of the multipole ex-

pansion, Y~(@i, di) are the surface spherical harmonics,

M ~ are the multipole coefficients determined from the

panel charges, and 1 is the expansion order.

Given the multipole coefficients, the same multipole

expansion can be used to quickly, but approximately,

evaluate the potential at many panel centers. For exam-
ple, in Fig. 1, there are d charged panels, and d panel

centers where the potential must be evaluated. A direct

calculation of those potentials requires order d2 opera-

tions, but only order d operations are needed if the mul-

tipole expansion is used (assuming the expansion order 1

is fixed).



1498 IEEE TRANSACTIONS ON MICROWAVE THEORY

\
@= m:ltipd. .xpamim

/

Fig. 1. Theevaluation of thepotential at(ri, @,, Oi).

In the Fig. 1 case, theerror duetotruncating themul-

tipole expansion is bounded [7], as in

(5)

The quantities r and R are as in Fig. 1 and K1 is a constant

independent of the multipole expansion order, 1. The

bound indicates that the multipole potential evaluations

converge more rapidly with expansion order as the mini-

mum distance between the panel charges and the evalua-

tion points increases.

In order to ensure that the error bound in (5) tightens

sufficiently with each increase in expansion order 1, the

hierarchical multipole algorithm uses a multipole expan-

sion to represent the effect of charge in a region only if

the radius of the region, R, is less than half the distance’

between the region’s center and the evaluation point, de-

noted r. For example, in Fig. 2 two groups of panels are

represented by a multipole expansions of order 1, and by

the above criteria, both can be used to evaluate the poten-

tial at panel ‘i’s center, as R/r = 3R/3r < 0.5.

B. A Two-Dimensional Example

The aggregation of distant panels into multipole expan-

sions which can be used to evaluate potentials at many

panel centers is the source of the hierarchical multipole

algorithm’s efficiency. Maintaining this efficiency for

general distributions of panels while controlling error is

ensured by exploiting a hierarchical partitioning of the
problem domain, the smallest cube containing all the con-

ductors.

Consider, for example, evaluating the potential at some

point (ri, @i, Oi) in Fig. 3 due to panel charges inside the

illustrated problem domain. A first partitioning would be

to break the problem into four smaller squares, leaving

(ri, @i, f3i) somewhere in the lower left square (Fig. 3(b)2.
To ensure that the errors due to truncating the multipole

expansion shrink rapidly with increasing expansion order,

multipole expansions will not be used to represent the

21n the three-dimensional problem, the equivalent partitioning would be

to divide a cube into eight smaller cubes.

AND TECHNIQUES, VOL. 40, NO. 7, JULY 1992
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Fig. 2. The evaluation of two multipole expansions with the same error
bound.
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Fig. 3. The evaluation of the potential at (rl, @i, 6’,).

charges in squares 1, 2, and 3, when evaluating the po-

tential at points in the lower-left square, because RI /rl,

R2 /r-2 and R~ /r3 in Fig. 3(b) are all greater than 0.5. For

the particular example evaluation point in the lower-left

square, the charge in square 2 is distant enough to satisfy

the criteria for using multipole expansions. However, a

more detailed study of the hierarchical multipole algo-

rithm than we will consider here would show that it is not

efficient to exploit such special cases.

Squares 1, 2, and 3 are each divided into four squares,

as in Fig. 3(c), to produce smaller regions which can pos-

sibly satisfy the criteria for representation by a multipole

expansion. In fact, many of the smaller squares do satisfy

the criteria, as can be seen by examining the illustrated

case, for which R/r is less than 0.5. Thus, at the end of
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this partitioning step, all the charges in the squares marked

with ank fin Fig. 3(c) will be represented with a multi-

pole expansion when evaluating the potential at points in

the square containing (ri, @i, Oi).

In order for the multipole expansions to be used to ‘rep-

resent the potential due to panel charges contained in the

unmarked squares of Fig. 3(c), these squares are parti-

tioned further, as in Fig. 3(d). Then, as before, the dis-

tance criteria implies that multipole expansions can be

used to represent the panel charges in all but a few squares

near the square containing the evaluation point. If it is

determined not to partition any further than is indicated

in Fig. 3(d), the potential pi, at (rj, @i, Oi), can then be

computed by summing a “-near” or direct term and a

“far” or multipole term. That is, the “near” contribution

to pi is due to panel charges in the nine unmarked squares

in Fig. 3(d), and is computed directly from PU qj products.

The “far” contribution to pi is due to distant panel

charges and is determined by evaluating the 25 multipole

expansions indicated in Fig, 3(d). In the next section, we

will refer to the list of squares associated with those 25

multipole expansions as the multipole list for the square

containing (ri, @i, Oi).

In general, the number of partitioning levels, L, for a

given problem domain is selected so that the squares on

the finest level each have no more thank panels (typically

k is of the order of ten). Then for a uniform distribution

of panels, the number of partitioning levels will be given

by L = log (n/k). Since the number of multipole expan-

sions on each partitioning level whicli contribute to pi is

bounded by a constant, each potential evaluation involves

order log n multipole expansion evaluations. Also, since

each lowest level square has no more than k panels, the

direct contribution to pi is bounded by a constant. There-

fore, as evaluating the entire potential vector requires n

evaluations of this type, the above multipole approach ,is

an order n log n algorithm for computing an approxima-

tion to Pq.3 The hierarchical multipole algorithm given in

[7], and used in the FASTCAP program mentioned be-

low, is more sophisticated than the above description sug-

gests. In particular, multipole evaluations are efficiently

combined into local expansions in such a way as to reduce

the number of operations to order n. However, for pur-

poses of describing the adaptive algorithm and the pre-

conditioning techniques below, the simplified algorithm

above is sufficiently detailed.

IV. BOUNDARY-ELEMENT ORIENTED ADAPTIVE

CALCULATION

In general, when representing the charge in a region by

a multipole expansion, the coefficients M ~ in (4) are de-
termined from the charge den~ity, q(r, ~, 8), as

M: =
s

q(r, ~, O)r”Y~m(rj, 0) da’. (6)
region

In this section, computing the multipole expansion coef-

ficients for panel charges is examined in more detail, and

is shown to lead naturally to an adaptive multipole algo-

rithm.

A. Computing the Multipole Expansions

Returning to Fig. 1, the potential at the Cartesian

equivalent of (ri, @i, Oi), (xi, yi, zi), due to d distant panels

may be approximated with a zeroth-order multipole ex-

pansion, which is equivalent to computing the potential

due to a single charge equal to the sum of the d panel

charges, and located at the center of the smallest ball en-

closing the panels,

(7)

Here (Xi, yi, zi) is the ith panel’s center point relative to

the center of the smallest ball enclosing the distant panels,
ri & Jx? + y? + z:, and

(8)

The approximation

*—ol
to(xi, Yi> z,) = M o_~ (9)

i

is the zeroth-order multipole expansion for the potential

due to the distant panels. For accuracy reasons, higher

order expansions are typically used. For example, the

first-order multipole expansion for ~ is

t(xi, Yt, Zi) = VO(xi, Yi> Zi) + *l(xi, Yi, zi), (10)

with

where, for panels on which the charge is assumed uni-

formly distributed,

W&j z’ da’; (12)
pane~

(13)
j = I aj Jpane~

d

fi&–2z Q
!

Y’
j=l aj pane~

The added potential ~1 is the field due

aligned along the vector

(X, y,z) = (m:, – m;/2, –

. .

da’. (14)

to a single dipole

m ~/2). (15)

In general, the lth order multipole expansion in (4) can be

rewritten in the form

+ t.(xl, Y,, Zi),+(xi, Yi7 d = ~_n (16)
3The analysis is similar for the three-dimensional case. The primary dif-

ference is that in the three-dimensional case space is partitioned into cubes,
and when cubes are subpartitioned, they generate eight smaller cubes. ,L—u
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with each ~,1 corresponding

2n-pole charge constellation.

B. The Adaptive Algorithm

to the potential due to a

The simple multipole algorithm discussed in Section III

uses multipole expansions to represent potentials due to

panel charges inside cubes which are far enough away

from the evaluation point. The efficiency of this proce-

dure depends on the number of panels in the cubes. Con-

sider, for example, a cube containing three panels whose

potential is to be approximated using a first-order multi-

pole expansion of the form (16),

(17)

The exact potential due to the cube’s panels has the form

JOz, Yi, Zi) = ~jl~l + ~l?-~’l-+ ~z3~3, (18)

assuming the three panels are numbered 1, 2, and 3. In

the capacitance calculation, the geomet~-dependent

quantities in (17) and (1’8) are calculated once and stored

for repeated use in computing the iterates of Algorithm 1.

Thus evaluating (17) involves multiplying four, fixed, ge-

ometry-dependent quantities

(19)

~y the charge-dependent multipole coefficients fi ~, ~ ~,

11 ~ and fi ~, while (18) involves computing only the three

products, multiplying the geometric quantities P,J, j = 1,
. . . 3, by the corresponding charges. Therefore, for this

case ~t will be more efficient to evaluate the potential due

to panels in this cube using Pu qj products rather than by

evaluating multipole expansions.

An adaptive multipole algorithm can be derived from

the simplified approach described in Section 111if the po-

tential due to panel charges in a cube is always evaluated

directly, rather than with a multipole approximation,

whenever the number of expansion coefficients would ex-

ceed the number of panels. A more precise definition of

the computational procedure is given in Algorithm 2 be-

low, which uses some notation which we now introduce.

The cube which contains the entire problem domain is
referred to as the level O cube. If the volume of the cube

is divided into eight equally sized child cubes, referred to

as level 1 cubes, then each has the level O cube as its

parent. The panels are distributed among the child cubes

by associating a panel with a cube if the panel’s center

point is contained in the cube. This process can be re-

peated to produce L levels of cubes, and L partitionings

of panels starting with an 8-way partitioning and ending

with an 8L-way partitioning. The number of levels, L, is

chosen so that the maximum number of panels in any fin-

est, or Lth, level cube is less than some threshold (nine is

a typical default). A neighbor of a given cube is defined

as any cube which shares a corner with the given cube or

shares a comer with a cube which shares a comer with

the given cube (note that a cube has a maximum of 124

neighbors). Finally, in the algorithm below it is assumed

that for each finest-level cube, a multipole list has been

constructed using a recursive approach similar to that

given in the two-dimensional example above.

Algorithm 2: Adaptive Algorithm for Computing p =

Pq.

Comment: Compute the potential due to nearby

charges directly.

For each finest-level cube i = 1 to 8L {

For each panel j in finest-level cube i {

Setpj = O.

For each panel k in cube i or its neighbors

{

Add Pj~q~ toPj.

}

}

}
Comment: Compute the multipole coefficients from

the charge vector q.

Comment: order is the order of the multipole ex-

pansion (typically 2).

For each level j = L to 2 {

For each level j cube i = 1 to 8] {

If cube i contains more than (order + 1)2

panels {

Compute the multipole coefficients for

cube i using panel charges and/or coef-

ficients of child cube multipole expan-

sions.

}

}

}
Comment: Compute the potential due to distant

panels.

For each finest-level cube i = 1 to 8L {

For each cube j in cube i’s multipole list {

If cube j contains more than (order + 1)2

panels {

For each panel k in cube i {

Evaluate the multipole expansion for

cube j at (xk, yk, zk) and add tO Pk.

}
1’
Else {

For each panel kin cube i {

For each panel 1 in cube j

Add Pk[q[ to pk.

}
}

}

}

}

{

It should be again noted that, as mentioned at the end

of Section III, Algorithm 2 is a simplified version of the



NABORS etal.: FAST CAPACITANCE EXTRACTION OF GENERAL 3-D STRUCTURES 1501

(a) (b)

Fig. 4. Partitionings used in Algorithm2, (b), and bytheadaptive algo-

rithmof [14], (a).

hierarchical multipole algorithm [14], [7]used in FAST-

CAP [l]. Thecomplete algorithm also adaptively applies

local expansions to improve the efficiency of the process

of gathering together multipole expansions. ‘

C. Comparison to Previous Work

The above approach to making the multipole algorithm

adaptive is specialized to the boundary-element problem.

A more general, but not as efficient, approach would be

to extend to three-dimensions the two-dimensional adap-

tive algorithm described in [14]. In this earlier work, the

multipole algorithm is made adaptive by breaking up the

problem domain nonuniformly, in which case lowest level

squares are of different sizes, where the sizes are chosen

so that each lowest-level square has roughly the same

number of panels.

To see why an adaptive algorithm based on a nonuni-

form partitioning of the problem domain can be ineffi-

cient, consider computing the potential at the center of the

panel labeled A in Figure 4(a). For this example, a two-

dimensional square problem domain has been recursively

quartered, the recursion being halted when a square had

no more than one panel. To compute the potential at the

center of panel A using a multipole algorithm based on

this nonuniform partitioning requires: nine direct poten-

tial evaluations, for the nine panels in nearest-neighbor

squares bordering the square containing A, and eleven

multipole evaluations for the eleven nonemlpty squares not

bordering A. Alternatively, if a uniform partitioning is

used, ak in Fig. 4(b), then it is easily seen that only jive

multipole evaluations and no direct evaluations are re-

quired.

Such an increase in computational cost can not occur

with the adaptive algorithm given above, als the following

theorem states:

Z%eorem 1: The computational cost of the adaptive ap-

proach given in Algorithm 2 is never greater than that of

the corresponding nonadaptive algorithm.
The proof follows directly from the fact that the adap-

tive multipole algorithm, Algorithm 2, evaluates the po-

tential due to panef charges in a cube directly, rather than

with a multipole approximation, whenevelr the number of

expansion coefficients would exceed the number of panels.

It should be noted that the overhead cost of maintaining

a uniform domain partitioning has been ignored in this

comparison. If the distribution of panels is very nonuni-

form, a matching nonuniform partitioning, like the ap-

proach used in [14], will naturally generate fewer lowest-

level partitions, and hence reduce bookkeeping overhead.

Careful data organization can make this overhead negli.

gible for typical capacitance calculation problems. In the

examples presented in Section VI, for which FASTCAP

generates uniform domain partitionings with as many as

250000 lowest-level cubes, the bookkeeping overhead is

insignificant.

V, PRECONDITIONING THE ITERATIVE METHOD

In general, the GMRES iterative method applied to

solving (2) can be significantly accelerated by precondi-

tioning if there is an easily computed good approximation

to the inverse of P. We denote the approximation to P-’

by ~, in which case preconditioning the GMRES algo-

rithm is equivalent to using GMRES to solve

for the unknown vector x, from which the charge density

is computed by q = ~x. Clearly, if ~ is precisely P-1,

then (20) is trivial to solve, but then ~ will be very ex-

pensive to compute.

A. A Simple Example

A good approximation to P-’ that is easily computed,

and fits with the hierarchical multipole algorithm de-

scribed previously, can be derived by exploiting the fact

that P-1 is approximately the detailed capacitance matrix,

by which we mean the n x n capacitance matrix for the

problem in which every panel or tile used to represent the

conductor surfaces is treated as an independent conduc-

tor. To see why this point of view leads to a precondi-

tioned, consider the 7,x 7 P matrix, denoted P(7), for the

seven panel example in Fig. 5(a). The fourth row of P(7),

which is associated with the center panel in Fig. 5(a), can

be computed using the definition in (3) and is, in inverse-

farads,

P(7)4,~ P(7)4,~ P(7)4,3 P(7)4,4

0.5785 0.8346 1:4261 3.1686

P(7)4,5 P(7)4,~ (7)4,7
(21)

1.4261 0.8346 0.5785

where all the values have been multiplied by 10-10. The

fourth row of P(7) -‘ is, in picofarads,

– 1.3080 –.1 ,5898 – 15.4544 46.7864

– 15.4544 –1.5898 –1.3080 (22)

From the definition in (3), the matrix elements Pq,l must
decay as I j – 4 \ grows, but notice that the terms m P~j
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m
(a)

12345m
(b)

123

m
(c)

Fig. 5. Simple panel systems with potential coefficient matrices P(7), (a),

P(5), (b), and P(3), (c). The parallel, 1 m x 1 m panels are spaced 0.5 m

appart.

decay much faster as I j – 4 \ increases. Viewing P-1 as

an approximation to the detailed capacitance matrix makes

clear that the very fast decay of terms in P(7)- 1 is just an

example of classical electrostatic screening. The effect of

screening can also be seen by examining the row of P(5) -1

associated with the center panel in the five panel problem

in Fig. 5(b) and in the row of P(3) – 1 associated with the

center panel in the three panel problem in Fig. 5(c), which

are, in picofarads,

–2.1593 –15.5547 46.6990 –15.5547 –2.1593

(23)

and

P(3)~; P(3)~; P(3);4
(24)

– 16.5499 46.4573 – 16.5499

respectively. Comparing (22), (23), and (24) leads to the

observation that a good estimate for the fourth row of

P(7) -1 can be derived from the third row of P(5) -1, which

is a smaller problem, and that even the second row of

P(3) -1 provides a reasonable estimate. Specifically, the

estimate based on the five-panel problem is

[

‘(5)~; + (j - 4),
~4j = o

lj-41 <3;
(25)

, otherwise;

where ~ denotes the estimate to P(7)- 1.

B. Preconditioning Algorithm

The above example suggests an approach to estimating

P-1 for a general configuration of panels which fits with

the hierarchical multipole algorithm in that the precondi-

tioned ~“can be constructed and applied in a cube-by-cube

fashion. The preconditioned is formed by inverting a se-

quence of reduced P matrices, one associated with each

finest-level cube, as in Algorithm 3 below.

Algorithm 3: Forming ~.

For each finest-level cube i = 1 to 8L {

Form P‘, the potential coefficient matrix for the

reduced problem considering only the panels con-

tained in cube i and cube i’s neighbors.

Compute C’ = (Pi) -l.

For each panel k in cube i or cube i’s neighbors

{
if panel k is not in cube i {

delete row k from ~i.

}

}

}

Note that @ is not a square matrix and that

E (# rows in C’) = n (26)
,=1

where again n is the total number of panels. By comparing

Algorithm 3 with Algorithm 2, it is clear that Pi uses only

those elements of the full P matrix which are already re-

quired in Algorithm 2, and therefore the computational

cost in computing the preconditioned is only in inverting

small Pi matrices. Then computing the product P~xk,

which would be used in a GMRES algorithm applied to

solving (20), is accomplished in two steps. First, the pre-

k – ~xk using Algorithmconditioner is applied to form q –

4 below. Then, Pqk is computed using Algorithm 2 in the

previous section4.

Algorithm 4: Forming q = Lx.

For each finest-level cube i = 1 to 8L {

For each panel j in finest-level cube i {

For each panel kin cube i or its neighbors {

Add ~~k Xk tO qj.

}

}
}

VI. EXPERIMENTAL RESULTS

ln th;s section, results from computational experiments

are presented to demonstrate the efficiency and accuracy

of the preconditioned, adaptive, multipole-accelerated

(PAMA) 3-D capacitance extraction algorithm described

above [16]. In particular, the program FASTCAP, which

can use both direct factorization and multipole-acceler-

ated techniques, has been developed and incorporated into

MIT’s MEMCAD (Micro-Electrical-Mechanical Com-

puter-Aided Design) system [9]. The structures described

4A similar approach in a somewhat different context was suggested in
[15].
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Fig. 6. Thespherel discretization of the unit sphere.

below were created with the solid modeling program in

the MEMCAD system, PATRAN, or by computer pro-

gram! and all capacitance calculations were performed us-

ing FASTCAP. The multipole-acceleratecl algorithms in

FASTCAP use, by default, second-order multipole ex-

pansions and a GMRES convergence tolerance (see Al-

gorithm 1) of O.01.

To demonstrate absolute accuracy, the FASTCAP pro-

gram was used to compute the capacitance of a unit

sphere, discretized as in Fig. 6, and a unit cube, discre-

tized as in Fig. 7. In Table I, the capacitances computed

using the PAMA algorithm are compared with the capac-

itances computed using direct factorization of P in (2)

(Direct), and with analytic results for the unit sphere and

with reference results for the unit cube. As can be seen

from the table, the results using the PAMA algorithm are’

easily within one percent of the analytic or reference re-

sults .

The PAMA algorithm is nearly as accurate as the direct

factorization method even on more complex problems,

such as the 2 X 2 woven bus structure in Fig. 8. The

capacitance; computed using the two methods are com-

pared in Table II, using coarse, medium, and fine discre-

tizations of the woven bus structure, also shown in Fig.

8. Note that the coupling capacitance Cl~ between con-

ductors one and two, which is forty-times smaller than the

self-capacitance Cl 1, is computed nearly as accurately

with the PAMA algorithm as with direct factorization.

The computational cost of using the FASTCAP pro-

gram is roughly proportional to the product of the number

of conductors, m, and the number of panels n. This is

experimentally verified by computing the capacitances of

the 2 x 2 woven bus structure in Fig. 8, with progres-

sively finer discretizations. In Fig. 9, the execution times

required to compute these capacitances are plotted as a

function of mn, and as the graph demonstrates, the exe-

cution time does grow nearly linearly.

To demonstrate the effectiveness of various aspects of

the PAMA algorithm on a range” of problems, in Table III

the execution times required to compute the capacitances

Fig. 7. The cubel discretization of the unit cube.

TABLE I
CAPACITANCEVALUES (IN pF) ILLUSTR~TING

FASTCAP’s ACCURACY (TBy ANALYTIC

CALCULATION; tFROM [1 1], [17])

Problem

Spherel Cubel
Method 768 Panels 150 Panels

Direct 110.6 73.26
PAMA 110.5 73.28
Other lllt 73.5, 73.4?

Wovenl

Wovenz

WOve.3

(a) (b)

Fig. 8. The 2 X 2 woven bus problem: bars have 1 m X 1 m cross sec-

tions. The three discretizations are obtained by replacing each square face
in (a) with the corresponding set of panels in (b).

TABLE II
CAPACITANCE VALUES (IN pF) ILLUSTRATING FASTCAP’s ACCURACY POR

THE COMPLICATED GEOMETRY OF FIG. 8.

Problem

Woven 1 Woven2 Woven3
1584 Panels 2816 Panels 4400 Panels

Method Cl, C,2 c,, C,2 c,, C,*

Direct 251.6 –6.353 253.2 –6.446 253.7 –6.467
PAMA 251.8 –6.246 253.3 –6.334 253.9 –6.377
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(Number of Conductors,m)*(Numbmof Panels,n)

Fig. 9. Execution time as a function of rnrr for the MA, AMA, and PAMA

algorithms applied solving to progressively finer discretizations of the 2 x

z woven bus problem.

TABLE HI

CPU TIMES IN MINUTES ON AN IBM RS6000i540 (TIMES IN PARENTHESESARE EXTRAPOLATED)

Cube2 Sphere2 2 X 2 Woven Bus Via Diaphragm 5 x 5 Woven Bus

Method 294 Panels 1200 Panels 4400 Panels 6185 Panels 7488 Panels 9630 Panels

Direct 0.11 3.2 185

MA 0.06 0.3 6.0

AMA 0.05 0.2 3.3

PAMA 0.05 0.2 2.3

of six different examples using four different methods are

given. The examples Cube2 and Sphere2 are finer discre-

tizations of the unit cube and sphere in Figs. 6 and 7; the

examples 2 x 2 Woven Bus and 5 x 5 Woven Bus are

described above; the example Via, shown in Fig. 10,

models a pair of connections between integrated circuit

pins and a chip-carrier; and the example Diaphragm,

shown in Fig. 11, is a model for a microsensor [18].

From Table III, it can be seen that using the adaptive

multipole algorithm (AMA) improves FASTCAP’s exe-

cution time by a factor of two over using the multipole

algorithm (MA) alone, and that using the preconditioned

can reduce the execution time by nearly a factor of five.

The improvement due to the adaptive algorithm is small

because it is being compared to our MA algotithm [1],

which ignores empty cubes, and is therefore already

somewhat adaptive. Exploiting empty cubes is trivial to

implement, and makes an enormous difference. For the

largest problem, the 5 X 5 Woven Bus, more than 252000

out of 262000 cubes used to partition the problem do-

main are empty. A truly, nonadaptive multipole algorithm

would therefore be twenty-five times slower than the our

MA algorithm.

The reduction in execution time afforded by the adap-

tive algorithm (AMA) over the normal multipole algo-

rithm (MA) stems from more efficiently computing the Pq

product in each iteration of the GMRES algorithm; and

using the preconditioned reduces execution time by reduc-

ing the number of iterations required to achieve conver-

gence. Because of various program overheads, comparing

(490) (890) (1920)
11 8.7 42

4.7 5.9 23
3.2 1.3 11

4 w
Fig. 10. Two signal lines passing through conducting planes; via centers

are 2 mm appart.

Fig. 11. A schematic illustration of the diaphragm problem. The two plates
are 0.02 pm appart at the center.
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Fig. 12.The norm of the residual, II; – Pqkll, as afunction of iteration

for the MA, AMA, and PAMA algorithms applied to solving the Dia-

phragm problem.

total execution times can hide the sometimes dramatic ef-

fect the preconditioned can have on GMRE,S convergence.

To show the impact of the preconditioned more directly,

in Fig. 12 we plot the norm of the residual, IIF – Pqk II,

as a function of iteration for the. MA, AMA, and PAMA

algorithms applied to solving the Diaphragm problem. As

is evident in the figure, the MA and AMA algorithms con-

verge nearly identically, as expected, but the residuals

computed with the PAMA algorithm drop considerably

faster. It is this rapid convergence that easily offsets the

fact that one PAMA iterate requires slightly more com-

putation than an AMA iterate.

VII. CONCLUSIONS

In this paper several new algorithms were presented that

make multipole-accelerated three-dimensional capaci-

tance calculation applicable and computationally efficient

for almost any geometry of conductors in a hofiogeneous

dielectric medium. In particular, a new adaptive multi-

pole algorithm was de~cribed, along with a ‘strategy for

accelerating iterative algorithm convergence by exploit-

ing electrostatic screening. Results from using FAST-

CAP, our program based on these techniques, to compute

the capacitance of a wide range of examples were given,

and they demonstrated that the new algorithms are nearly

as accurate as the more ‘standard direct factorization ap-

proach, and are more than two orders of magnitude faster

for large examples. Current research in progress is in ex-

tending the above approach to solving problems with

piecewise-constant dielectrics and ground planes.
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